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1. Abstract 

 

 

The process of aging causes changes in the brain, which may have effects on working 

memory; this is an important aspect of brain functioning necessary to complete everyday tasks 

(Peters, 2006, Scahill et al., 2003, Svennerholm et al., 1997). Researchers have shown that older 

adults (OAs) demonstrate more brain activity when compared to younger adults; that is, they 

show bilateral activation (both hemispheres) rather than lateralized (one hemisphere) activation, 

as young adults show for working memory tasks. This bilateral activation also correlates with 

better performance in OAs; thus, it is thought to be compensatory and used to counteract deficits 

caused by aging and cognitive decline (Niu et al., 2013, Talamonti et al., 2020, Vermeij et al., 

2012). However, some researchers do not find that additional bilateral activity is compensatory 

and indicates neural inefficiency (Knights et al., 2021, Morcom & Henson, 2018). Thus, more 

research is needed to further investigate the role of bilateral activity and better define its 

compensatory effects.  

This study, during the April-September UREAP term, will use functional near-infrared 

spectroscopy (fNIRS) to examine younger adults’ (18-25) brain activity while completing 

cognitive tasks examining working memory function (computer-based, visuospatial N-back 

tasks). The study will then further continue past September to examine older adults’ (>65) brain 

activity while completing the same working memory tasks, which will then be compared to the 

results from the young adult group in multiple domains (reaction time, accuracy, and brain 

activity patterns). The goal of this research is to further understand the role of widespread brain 

activity, which may lead to further research in cognitive decline and the characterization of 

healthy cognitive aging. 
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2.1. Background 

 

As advances in medicine and public health measures, among other factors, have 

lengthened the average lifespan of humans, the proportion of older adults (aged >65 years) is 

rapidly increasing (Cabeza et al., 2018). The aging process continues to be closely associated 

with cognitive decline in many individuals, therefore the number of older adults diagnosed with 

a memory-related illness such as Alzheimer’s disease is predicted to rapidly increase within the 

population (Cabeza et al., 2018). This prompts the urgent need for research that can help us 

understand the underlying neural mechanisms behind optimal aging, where cognitive abilities 

remain intact, as opposed to cognitive decline, which may progress into conditions such as 

Alzheimer's disease (McDonough et al., 2022; Cabeza et al., 2018). 

Studies have indicated that age-related differences in brain activity are linked to changes 

in behavior, such as cognitive decline, and are reflected in task-specific cognitive performance. 

However, there remains a significant gap in research examining the correlation between changes 

in brain activity and performance, and the underlying neural mechanisms behind these changes 

(Cabeza et al., 2018). These mechanisms span various levels, from cellular and molecular 

processes to factors such as brain atrophy and white matter degradation (McDonough et al., 

2022; Cabeza et al., 2018). 

One of the most pressing questions in cognitive neuroscience is why some individuals 

experience more rapid cognitive decline than others (McDonough et al., 2022). This also 

highlights the critical importance of employing effective brain imaging techniques, like 

functional near-infrared spectroscopy (fNIRS), to investigate age-related differences in brain 
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activity. Such research may aid in uncovering early indicators of brain diseases that impact 

cognitive functions, particularly memory. 

Cognitive aging is a multifaceted process marked by both physiological and behavioral 

changes that can influence daily life. Specifically, changes in brain function have been correlated 

with deficits in working memory (Peters, 2006; Scahill et al., 2003; Svennerholm et al., 1997). 

For some individuals, these changes can escalate into neurodegenerative diseases, such as mild 

cognitive impairment, which is often a precursor to Alzheimer’s disease. Therefore, 

understanding the characteristics of healthy aging is crucial for identifying those at risk of 

progressing into disease. 

Researchers have observed that older adults often exhibit bilateral brain activity, meaning 

both hemispheres are active, during cognitive tasks. In contrast, younger adults tend to show 

lateralization, where one side of the brain is predominantly engaged (Cabeza, 2002). The 

Hemispheric Asymmetry Reduction in Older Adults (HAROLD) model suggests that this 

bilateral activation serves as a compensatory mechanism to counteract age-related cognitive 

decline, particularly in tasks involving the prefrontal cortex (Cabeza, 2002). Compensation, in 

this context, refers to the enhancement of cognitive performance through the recruitment of 

additional brain networks (Cabeza et al., 2018). This bilateral brain activity appears to enhance 

older adults' task performance, as exemplified by studies indicating that low-performing older 

adults activate similar networks to younger adults but achieve lower performance, whereas high-

performing older adults employ bilateral activation (Cabeza et al., 2002). Nevertheless, some 

studies challenge the HAROLD model's claims, suggesting that bilateral activity might not 

necessarily be compensatory but rather indicative of an inability to use neural resources 

efficiently (Knights et al., 2021; Morcom & Henson, 2018). Consequently, there's a pressing 
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need for further research to better understand the role of bilateral brain activity in older adults 

and its impact on performance. 

Studies using fNIRS have demonstrated enhanced working memory performance in older 

adults when accompanied by increased bilateral activity in the prefrontal cortex (Niu et al., 2013; 

Talamonti et al., 2020; Vermeij et al., 2012). Therefore, utilizing fNIRS to compare the brain 

activity of older adults with that of younger adults during cognitive tasks can be used to examine 

the significance of bilateral activation in older adults' performance. This study therefore aims to 

provide deeper insight into the changes occurring in brain function and cognition as we age. With 

a more comprehensive understanding of these neurological processes, researchers may be better 

equipped to target changes in brain activity before they evolve into more severe forms of 

cognitive impairment. 

 

2.2. Cognitive Performance, Cognitive Load, and Task Complexity 

 

Understanding how cognitive load influences brain activation patterns can offer valuable 

insights into the mechanisms of brain activity in older adults relative to younger counterparts. By 

manipulating the complexity of working memory tasks, we can explore the intricate relationship 

between cognitive load, task complexity, and brain activity across age groups. This exploration 

may aid in understanding the limitations of brain activity changes at specific levels of task 

complexity. 

The Compensation-Related Utilization of Neural Circuits Hypothesis (CRUNCH) model 

of brain aging (Reuter-Lorenz & Cappell, 2008) highlights the significance of manipulating task 

complexity as well as differences in cognitive load. According to CRUNCH, age-related 
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compensatory mechanisms involve the recruitment of additional brain regions, often observed in 

the prefrontal cortex (PFC), to maintain cognitive performance at levels comparable to young 

adults (Reuter-Lorenz & Cappell, 2008). Furthermore, the CRUNCH model states that when task 

complexity surpasses a certain threshold, cognitive load exceeds capacity, leading older adults to 

exhibit reduced activity compared to younger adults (Reuter-Lorenz & Cappell, 2008). Despite 

these findings, only a limited number of studies have tested the CRUNCH model's predictions 

(Bauer et al., 2015; Toepper et al., 2014; Mattay et al., 2006), and some have produced results 

contradictory to its claims (Schneider-Garces, 2010; Jamadar, 2020). This highlights the need for 

further experimental research that manipulates cognitive load to determine whether the increased 

brain activity seen in older adults is limited to a certain level of task difficulty, or whether these 

neural recruitment strategies are employed regardless of cognitive load.  

 

2.3. Exploring Age-Related Frontoparietal Activation with fNIRS 

 

Functional Near-Infrared Spectroscopy (fNIRS) is a non-invasive method of studying 

brain activity across various age groups. Unlike other imaging techniques such as fMRI, fNIRS 

offers better temporal resolution and lower sensitivity to body movements (Pinti et al., 2020). It 

functions by emitting near-infrared light at various wavelengths (ranging from 650-950nm) from 

a transmitting optode. This light penetrates through the layers of the head (skin, skull, 

cerebrospinal fluid) and reaches cortical brain tissue. Subsequently, the light undergoes 

attenuation, absorption, and scattering, which is detected by receiving optodes (Pinti et al., 

2020). By measuring the concentrations of oxygenated hemoglobin (HbO2) and deoxygenated 

hemoglobin (HbR), fNIRS serves as a proxy for cortical activity. This technology enables 



J. Lewis (UREAP Report) 
 

7 

researchers to investigate changes in brain activity within different regions as individuals age, 

making it an ideal tool for examining age-related changes in targeted brain areas. 

While many studies have traditionally focused on brain activity within the prefrontal 

cortex (Yeung et al., 2016; Vermeij et al., 2017; Nguyen et al., 2019), more recent research using 

brain imaging technologies, such as fMRI and fNIRS, examines multiple brain regions at once 

(Heinzel et al., 2015; Kato et al., 2017; Kito et al., 2014). This approach allows researchers to 

investigate functional connectivity within the brain. Studying functional connectivity, rather than 

isolating individual brain regions, is critical for understanding age-related changes in the brain. It 

enables researchers to explore the coordinated activity and communication patterns between 

different brain regions, offering a more holistic view of the brain's functional organization 

(Ferras-Permayner, 2019). Recent findings using fNIRS have demonstrated changes in brain 

activity not only in the frontal lobe but also in the parietal lobe, shedding light on the importance 

of exploring frontoparietal connectivity through neural pathways (Meidenbauer et al., 2021; Yuk 

et al., 2020; Fishburn et al., 2014). These outcomes emphasize the value of using fNIRS to 

investigate functional connectivity within the frontoparietal lobe and its potential influence on 

performance.  

Our study aims to use fNIRS to investigate prefrontal cortex and parietal lobe activity, as 

well as frontoparietal connectivity using fNIRS. We will employ a visuospatial N-back task that 

manipulates task complexity, leading to an increase in cognitive load among participants. This 

research seeks to examine how differences in brain activity translate into distinct behavioral 

patterns, as well as how task complexity affects these brain activity patterns and how this relates 

to performance. Additionally, we will administer cognitive assessments to our older adult 

participants, such as the RBANS and MoCA,  to explore potential associations between brain 
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activity patterns (e.g., compensation) and cognitive function. The results from our study could 

potentially begin to help us better understand the underlying neural mechanisms associated with 

aging. 

Furthermore, we plan to examine cognitive function in participants who previously engaged 

in an N-back study 12 months prior by implementing the MoCA and RBANS tests. This 

longitudinal approach will allow us to compare performance across sessions and potentially 

identify cognitive decline associated with previously measured brain activity. 

 

3. Methods 

 

3.1 Participants 

 

This study involved a sample of twenty young adults ranging from 18 to 25 years old. 

Recruitment efforts were made in various ways, including the posting of informational flyers in 

establishments like TCC and Golds Gym (with permission) and word-of-mouth referrals. Before 

any experimental procedures began, participants were provided with a consent form, which they 

were required to read and sign. Eligibility criteria for participation included various factors, such 

as: age within the aforementioned range, normal or corrected vision, English fluency (90-100%), 

a minimum of six years of formal education, absence of known neurological or psychological 

disorders (such as stroke, brain injury, Parkinson's disease, bipolar disorder, or depression), non-

smoking status, no use of Aricept (attention-enhancing medication) or psychoactive drugs, and 

right-handedness. These criteria were communicated in the recruitment posters, and potential 

participants were screened for compliance via phone or email before visiting TRU to partake in 
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the study. The study received prior approval from TRU's research ethics committee before the 

experimental testing began. 

 

3.2 Procedure 

 

Upon signing the consent form and addressing any questions or concerns about the 

experiment, participants were fitted with the fNIRS Brite head cap (Artinis, Medical Systems, 

The Netherlands). The cap's placement, centered at Cz according to the 10-20 system, was 

standardized for all participants to ensure accurate cap placement. The fNIRS cap array features 

ten light-emitting optodes transmitting NIR light within the 650-950 nm range and eight 

receivers designed to detect changes in light absorption, capturing data at a rate of 25 Hz. These 

optodes were positioned 3 cm apart, and consisted of 21 recording channels across the right 

prefrontal cortex (PFC), left PFC, and right parietal cortex (see Figure 1.). Continuous 

monitoring of changes in oxygenated and deoxygenated hemoglobin concentrations from each 

channel allowed the assessment of brain activity, with greater oxygenated hemoglobin delivery 

indicating increased brain activity. To reduce "noise" factors such as movement artifacts and 

physiological noise, a short separation channel (SSC, 1.5 cm) was positioned on the left PFC. 

Subsequently, this SSC data was filtered during analysis to enhance the isolation of the 

hemodynamic response concerning brain activity during the working memory task and to reduce 

the risk of false positives. 

fNIRS data acquisition was performed using Oxysoft (Artinis, Medical Systems, The 

Netherlands, version 3.2.51.4) through a Bluetooth connection to a laptop. After ensuring a 

reliable signal, including adjusting hair that might obstruct the optodes’ access to the scalp, 
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participants were asked to participate in three N-back tasks, each increasing in difficulty (1-back, 

2-back, and 3-back tasks, respectively). These tasks involved continuous observation of visual 

stimuli, requiring participants to determine if the current visual stimulus (indicated by a blue 

box) matched the previous box presented either 1 box ago (1-back), 2 boxes ago (2-back), or 3 

boxes ago (3-back), denoted by pressing 'S' for similar or 'D' for different. The task design 

utilized E-prime 3.0 (Psychology Software Tools, PA, USA) and was presented on a laptop (Dell 

Latitude 3410, 14” HD, 1920 x 1080 resolution) positioned in front of the participants. Each 

session lasted 45 to 60 minutes, with rest breaks provided between the three N-back tasks and as 

requested. 

 

 

 

Figure 1. Frontal and profile view of the placement of fNIRS optodes on the prefrontal and 

parietal cortex, where D (blue) represents detecting optodes and S (yellow) represents 

transmitting optodes. The source-detector pairings make up 21 channels across the right and left 

hemispheres, with channels covering right prefrontal cortex (PFC), left PFC, and right parietal 

cortex (PC). A short-separation channel in the left hemisphere can also be indicated (S10 and D7, 

channel 15). 
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3.3 N-Back Tasks 

 

In each N-back task, participants encountered rest blocks lasting 20 seconds, serving as a 

baseline measurement for the hemodynamic response. During these intervals, participants 

relaxed while viewing a blank screen with the word "rest" displayed in the middle. Following 

each rest block, a 40-second trial block ensued, during which participants performed the 

designated N-back task (1-back, 2-back, or 3-back). Each participant performed the 1-back task 

first, then either the 2-back or 3-back next (the order to which the tasks were performed were 

randomly assigned to each participant prior to testing). 

In these tasks, a blue box appeared at one of six possible positions relative to a central 

cross on the screen. The box's position changed during the 40-second trial block, appearing for 

0.5 seconds and then disappearing. Participants had the remaining 1.5 seconds before the next 

box appeared to indicate whether the current stimulus position matched that of 1, 2, or 3 boxes 

ago, using the 'S' key for a match and the 'D' key for a difference, all performed with their right 

hand. Each trial block was comprised of twenty boxes, with 20% (4 trials) designated as targets 

(matching the position from 2 trials ago and indicated by the “S” key) and 80% (16 trials) as 

non-targets (position different from 2 trials ago and indicated by the “D” key). This cycle of 20-

second rest and 40-second task periods was repeated four times in total, amounting to 

approximately 4 minutes for each condition, followed by a 5-minute rest period between 

conditions. 
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3.4 Analysis 

 

Data from each of the three N-back tasks for each participant were extracted from E-

prime and compiled into an Excel database. Trials with no observed responses and those with 

reaction times less than 80 milliseconds (which is indicative of a guess rather than a calculated 

response) were excluded from further analysis. Calculations included error rates (total incorrect 

responses divided by total possible responses), Pr values were calculated as a measure of 

accuracy (calculated by subtracting incorrect non-target responses from correct target responses), 

and reaction times (obtained from correct responses) for each participant across the three N-back 

tasks and for target and non-target categories (see Figures 2-4). These measures were then 

averaged across all participants to identify behavioral differences in accuracy and reaction times.  

To determine the distance traveled by light emitted from the optodes, an age-dependent 

differential path-length factor (DPF) was applied. Data exported from Oxysoft were converted to 

.snirf format for further analysis using the AnalyzIR toolbox (MATLAB, 2021). The modified 

Beer-Lambert Law (Sassaroli & Fantini, 2004) was employed to convert changes in optical 

density to changes in HbO concentration (μM). Only HbO values from this conversion were 

considered for subsequent analysis (Blum et al., 2021). A preprocessing technique combining 

autoregressive pre-whitening methods and short-channel regression was utilized to extract 

movement artifacts and physiological noise (Huppert, 2016). 

A subject-level general linear model (GLM) was applied to identify significantly active 

channels during the N-back trial blocks for each condition. Task event onsets and durations were 

used as model parameters. The GLM, a well-established method for analyzing event-related 

activity, minimizes the likelihood of false positive events often encountered with peak values or 
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areas under the curve methods. It assumes a canonical hemodynamic response function (HRF) 

and calculates beta coefficients as indicators of changes in HbO signal intensity and direction 

across all channels during task epochs. T-test contrasts, corrected for multiple comparisons, were 

employed to identify significant differences in brain activity across all 21 channels between task 

load conditions, with significance set at p < .05. 

Future analyses will encompass between-group correlational analyses, comparing young 

adults to older adults, to examine differences in reaction times, accuracy, and brain activity 

patterns during each of the three N-back tasks. 

 

4. Results 

 

Figure 2. Average reaction time (RT) between presentation of stimulus and participant response 

to stimulus (ms) over 1-Back, 2-Back, and 3-Back task conditions (n=20) 
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Figure 3. Average Pr Values over 1-Back, 2-Back, and 3-Back task conditions (n=20) 

 (Pr= [correct target responses - incorrect non-target responses]) 

 

 

 

Figure 4. Average error rate percentages over 1-Back, 2-Back, and 3-Back task conditions 

(n=20) 

 (error rate % = number of incorrect responses/total number of possible responses x 100) 
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Figure 5. Visualization of active channels for each load condition in young adults (n=20), where 

red lines indicate more brain activity and blue lines indicate less brain activity.     
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1-Back – 2-Back 1-Back – 3B-Back    2-Back – 3-Back 

   

 

 

 Figure 6. Visualization of active channels for group-level contrasts between task load conditions 

in young adults (n=20), where red lines indicate more brain activity and blue lines indicate less 

brain activity.        
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Table 1. Active channels relative to baseline for each load condition for young adults (n=20). 

 

Relative to baseline Source Detector CH Hemisphere beta T-stat p-value 

1-Back 1 

4 

5 

8 

2 

2 

3 

7 

3 

4 

8 

14 

RH 

RH 

RH 

LH 

1.235 

0.987 

0.296 

0.271 

5.689 

3.836 

2.290 

2.165 

>0.001 

>0.001 

.025 

.035 

 

2-Back 2 

4 

8 

9 

1 

2 

5 

6 

1 

4 

12 

20 

RH 

RH 

LH 

LH 

0.232 

0.566 

0.216 

-0.267 

2.087 

2.354 

2.140 

-2.044 

.041 

.022 

.037 

.046 

3-Back 1 

4 

5 

7 

8 

2 

2 

3 

5 

7 

3 

4 

8 

10 

14 

RH 

RH 

RH 

LH 

LH 

0.609 

0.965 

0.314 

0.361 

0.241 

2.392 

3.306 

2.494 

2.185 

2.019 

.020 

.002 

.016 

.033 

.048 
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Table 2. Group-level contrast results with significantly active channels between task load 

conditions for young adults (n=20). 

 

Relative to baseline Source Detector CH Hemisphere beta T-stat p-value 

1-Back-2-Back 1 

6 

8 

9 

 

 

2 

6 

7 

6 

 

 

3 

16 

14 

20 

RH 

LH 

LH 

LH 

0.831 

-0.391 

0.301 

0.351 

2.883 

-2.889 

2.066 

2.240 

.006 

.005 

.043 

.029 

 

2Back-3Back 2 

7 

8 

3 

7 

5 

5 

13 

12 

RH 

LH 

LH 

0.413 

-0.374 

0.226 

2.229 

-2.508 

2.020 

.030 

.015 

.048 

 

5.1.Discussion 

 

 After calculating reaction times (ms), error rates (%), and Pr values for each task load 

condition in young adults, some behavioural differences between 1-Back, 2-Back, and 3-Back 

tasks can be observed. Average reaction time, which was calculated as the difference in time 

between presentation of the stimulus and participant response to the stimulus, indicated by 

pressing the “S” or “D” key (in ms), was shown to increase with an increase in task load 

complexity (1-Back<2-Back<3-Back); an increase in reaction time is indicative of a slower 

participant response. The average reaction times over the twenty young adult participants were 

calculated as: 479.89 ms (±89.28) for the 1-Back task, 536.38 ms (±143.53) for the 2-Back task, 

and 602.9 ms (±191.24) for the 3-Back task, respectively.  
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 Pr values were calculated as a measure accuracy of responses, which was done by 

subtracting the incorrect non-target responses or “false alarms” from the correct target responses. 

The results demonstrated a decrease in Pr values or accuracy with an increase in task load 

complexity (1-Back<2-Back<3-Back) . The average Pr values for the twenty young adult 

participants were calculated as: 12.65 (±3.32) for the 1-Back task, 8.55 (±2.48) for the 2-Back 

task, and 3.3 (±3.60) for the 3-Back task, respectively.  

Error rate percentage was calculated by dividing the total number of incorrect responses 

by the total number of possible responses within a given task and multiplied by 100; the results 

demonstrated an increase in error rate percentage with an increase in task load complexity (1-

Back<2-Back<3-Back). The average error rate percentage over twenty young adult participants 

were calculated as: 3.63% (±3.71) for the 1-Back task, 9.31% (±3.10) for the 2-Back task, and 

15.88% (±4.50) for the 3-Back task, respectively.  

Brain activity was measured using fNIRS and analyzed using MATLAB software (see 

Figures 5- 6). The results showed differences in brain activity between 1-Back, 2-Back, and 3-

Back task conditions, as well as for group-level contrasts (1-Back – 2-Back, 1-Back – 3-Back, 2-

Back – 3-Back). While there seem to be differences in brain activity in the younger adult 

participants for each of the three task conditions, further analysis is needed to examine the extent 

of these differences and their significance. 

 An analysis of significantly active channels for the three task load conditions as well as 

the group-level contrasts can be seen in Table 1. And Table 2. above, which are based on a 

significance value of p < .05 and averaged over the twenty young adult participants. It can be 

observed that there are 4 active channels in the 1-Back task condition, 4 active channels in the 2-

Back task condition, and 5 active channels in the 3-Back condition. For group-level contrasts, 
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there are 4 active channels for the 1-Back – 2-Back contrast, 3 active channels for the 2-Back – 

3-Back contrasts, and no significantly active channels for the 1-Back – 3-Back contrasts. These 

results, along with the visualizations in Figures 5 and 6, will be used for future analysis to 

compare with the results from the older adult (>65+) participant group for the same three task 

load conditions. 

 

5.2. Future Considerations 

 

 While there are observable differences in behavioral and brain activity differences 

between the three task load conditions in young adult participants, further analysis will need to 

be conducted after the experimental testing of the older adult participant group to perform both 

between-group and within-group correlational analyses. The results shown in this report have 

demonstrated that task complexity seems to have an effect on reaction time, error rate 

percentage, and accuracy, however the significance of these reactions cannot yet be reported.  

Future work for the Fall 2023 and Winter 2024 semesters will aim to examine behavioral 

and brain activity differences in older adult participants using fNIRS, as well as run between-

group correlational analyses to further examine whether there are distinctive brain activity 

differences between young and old adults. We hypothesize that these results will align with the 

predictions of the HAROLD model, which states that older adults will have bilateral brain 

activity as means of compensation, while young adults will have lateralized or unilateral brain 

activity. Additionally, the manipulation of task complexity will allow us to compare our results to 

the predictions of the CRUNCH model, which proposes that older adults will show less brain 

activity when and if task complexity exceeds cognitive abilities. Finally, MoCA and RBANS 



J. Lewis (UREAP Report) 
 

21 

cognitive assessments will be conducted on older adult participants to examine the  potential 

relationships between brain activity patterns and cognitive load. 
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7. Appendix 

 

 

Figure 7A-7D. Experimental set-up of fNIRS cap for study, performed in Vision & Cognition 

Lab at TRU (where 7A is anterior view, 7B is right-hemisphere view, 7C is posterior view, and 

7D is left-hemisphere view). 
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